Sciweavers

219 search results - page 8 / 44
» Learning the Dimensionality of Hidden Variables
Sort
View
NIPS
2008
14 years 9 days ago
Integrating Locally Learned Causal Structures with Overlapping Variables
In many domains, data are distributed among datasets that share only some variables; other recorded variables may occur in only one dataset. While there are asymptotically correct...
Robert E. Tillman, David Danks, Clark Glymour
COLT
1994
Springer
14 years 3 months ago
Learning Probabilistic Automata with Variable Memory Length
We propose and analyze a distribution learning algorithm for variable memory length Markov processes. These processes can be described by a subclass of probabilistic nite automata...
Dana Ron, Yoram Singer, Naftali Tishby
SSPR
2010
Springer
13 years 9 months ago
Information Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models
Many approaches to learning classifiers for structured objects (e.g., shapes) use generative models in a Bayesian framework. However, state-of-the-art classifiers for vectorial d...
André F. T. Martins, Manuele Bicego, Vittor...
DAGM
2010
Springer
13 years 12 months ago
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristi...
Hannes Nickisch, Carl Edward Rasmussen
JMLR
2012
12 years 1 months ago
Max-Margin Min-Entropy Models
We propose a new family of latent variable models called max-margin min-entropy (m3e) models, which define a distribution over the output and the hidden variables conditioned on ...
Kevin Miller, M. Pawan Kumar, Benjamin Packer, Dan...