Sciweavers

273 search results - page 1 / 55
» Learning the Structure of Deep Sparse Graphical Models
Sort
View
JMLR
2010
202views more  JMLR 2010»
13 years 5 months ago
Learning the Structure of Deep Sparse Graphical Models
Deep belief networks are a powerful way to model complex probability distributions. However, it is difficult to learn the structure of a belief network, particularly one with hidd...
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghah...
ICML
2009
IEEE
14 years 11 months ago
Large-scale deep unsupervised learning using graphics processors
The promise of unsupervised learning methods lies in their potential to use vast amounts of unlabeled data to learn complex, highly nonlinear models with millions of free paramete...
Rajat Raina, Anand Madhavan, Andrew Y. Ng
ICML
2009
IEEE
14 years 11 months ago
Sparse Gaussian graphical models with unknown block structure
Recent work has shown that one can learn the structure of Gaussian Graphical Models by imposing an L1 penalty on the precision matrix, and then using efficient convex optimization...
Benjamin M. Marlin, Kevin P. Murphy
TSP
2010
13 years 5 months ago
Learning graphical models for hypothesis testing and classification
Sparse graphical models have proven to be a flexible class of multivariate probability models for approximating high-dimensional distributions. In this paper, we propose techniques...
Vincent Y. F. Tan, Sujay Sanghavi, John W. Fisher ...
TSP
2010
13 years 5 months ago
Gaussian multiresolution models: exploiting sparse Markov and covariance structure
We consider the problem of learning Gaussian multiresolution (MR) models in which data are only available at the finest scale and the coarser, hidden variables serve both to captu...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...