Deep belief networks are a powerful way to model complex probability distributions. However, it is difficult to learn the structure of a belief network, particularly one with hidd...
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghah...
The promise of unsupervised learning methods lies in their potential to use vast amounts of unlabeled data to learn complex, highly nonlinear models with millions of free paramete...
Recent work has shown that one can learn the structure of Gaussian Graphical Models by imposing an L1 penalty on the precision matrix, and then using efficient convex optimization...
Sparse graphical models have proven to be a flexible class of multivariate probability models for approximating high-dimensional distributions. In this paper, we propose techniques...
Vincent Y. F. Tan, Sujay Sanghavi, John W. Fisher ...
We consider the problem of learning Gaussian multiresolution (MR) models in which data are only available at the finest scale and the coarser, hidden variables serve both to captu...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...