Probabilistic branching node inference is an important step for analyzing branching patterns involved in many anatomic structures. We propose combining machine learning techniques...
Haibin Ling, Michael Barnathan, Vasileios Megalooi...
We propose a novel HMM-based framework to accurately transliterate unseen named entities. The framework leverages features in letteralignment and letter n-gram pairs learned from ...
Bing Zhao, Nguyen Bach, Ian R. Lane, Stephan Vogel
A widely acknowledged drawback of many statistical modelling techniques, commonly used in machine learning, is that the resulting model is extremely difficult to interpret. A numb...
Learning to rank is a new statistical learning technology on creating a ranking model for sorting objects. The technology has been successfully applied to web search, and is becom...
Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-Sheng Wang...
"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning...
Carl Edward Rasmussen and Christopher K. I. Willia...