The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. Effective models of human dynamics can be learned from motion capture data usi...
A hybrid Bayesian Network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment the models are...
Martin Neil, Manesh Tailor, Norman E. Fenton, Davi...
—This paper shows how to reduce evaluation time for context inference. Probabilistic Context Inference has proven to be a good representation of the physical reality with uncerta...
Korbinian Frank, Patrick Robertson, Sergio Fortes ...
We describe an approach to building brain-computer interfaces (BCI) based on graphical models for probabilistic inference and learning. We show how a dynamic Bayesian network (DBN...
Design and development of novel human-computer interfaces poses a challenging problem: actions and intentions of users have to be inferred from sequences of noisy and ambiguous mu...
Vladimir Pavlovic, James M. Rehg, Ashutosh Garg, T...