In this paper, we study the problem of learning a matrix W from a set of linear measurements. Our formulation consists in solving an optimization problem which involves regulariza...
Andreas Argyriou, Charles A. Micchelli, Massimilia...
The analysis of spectral data constitutes new challenges for machine learning algorithms due to the functional nature of the data. Special attention is paid to the metric used in t...
Petra Schneider, Frank-Michael Schleif, Thomas Vil...
We propose a spectral learning approach to shape segmentation. The method is composed of a constrained spectral clustering algorithm that is used to supervise the segmentation of a...
Spectral clustering has attracted much research interest in recent years since it can yield impressively good clustering results. Traditional spectral clustering algorithms first s...
Bo Chen, Bin Gao, Tie-Yan Liu, Yu-Fu Chen, Wei-Yin...