Let f1 and f2 be graph parameters. The Ramsey number r(f1 m; f2 n) is defined as the minimum integer N such that any graph G on N vertices, either f1(G) m or f2(G) n. A genera...
: Jacobson, Levin, and Scheinerman introduced the fractional Ramsey function rf (a1,a2, ...,ak) as an extension of the classical definition for Ramsey numbers. They determined an e...
The Zarankiewicz number z(s, m) is the maximum number of edges in a subgraph of K(s, s) that does not contain K(m, m) as a subgraph. The bipartite Ramsey number b(m, n) is the lea...
Wayne Goddard, Michael A. Henning, Ortrud R. Oelle...
The Ramsey number r(H, Kn) is the smallest positive integer N such that every graph of order N contains either a copy of H or an independent set of size n. The Tur´an number ex(m,...