Partially observable Markov decision processes (POMDPs) have been
successfully applied to various robot motion planning tasks under uncertainty.
However, most existing POMDP algo...
Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo
Partially observable Markov decision processes (POMDPs) provide a principled, general framework for robot motion planning in uncertain and dynamic environments. They have been app...
Sylvie C. W. Ong, Shao Wei Png, David Hsu, Wee Sun...
Abstract— Research on numerical solution methods for partially observable Markov decision processes (POMDPs) has primarily focused on discrete-state models, and these algorithms ...
Partially observable Markov decision processes (POMDPs) are widely used for planning under uncertainty. In many applications, the huge size of the POMDP state space makes straightf...
Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, Mik...
Spoken dialogue systems are gaining popularity with improvements in speech recognition technologies. Dialogue systems can be modeled effectively using POMDPs, achieving improvemen...