While in general trading off exploration and exploitation in reinforcement learning is hard, under some formulations relatively simple solutions exist. Optimal decision thresholds ...
We consider the problem of multi-task reinforcement learning, where the agent needs to solve a sequence of Markov Decision Processes (MDPs) chosen randomly from a fixed but unknow...
Aaron Wilson, Alan Fern, Soumya Ray, Prasad Tadepa...
—Reinforcement learning is the scheme for unsupervised learning in which robots are expected to acquire behavior skills through self-explorations based on reward signals. There a...
Hiroaki Arie, Tetsuya Ogata, Jun Tani, Shigeki Sug...
We propose a new framework for aiding a reinforcement learner by allowing it to relocate, or move, to a state it selects so as to decrease the number of steps it needs to take in ...
We present a method for transferring knowledge learned in one task to a related task. Our problem solvers employ reinforcement learning to acquire a model for one task. We then tra...
Lisa Torrey, Trevor Walker, Jude W. Shavlik, Richa...