Markov decision processes (MDPs) are controllable discrete event systems with stochastic transitions. Performances of an MDP are evaluated by a payoff function. The controller of ...
Markov decision processes (MDPs) are controllable discrete event systems with stochastic transitions. The payoff received by the controller can be evaluated in different ways, dep...
We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observationbased strategy relies on partial information...
Krishnendu Chatterjee, Laurent Doyen, Thomas A. He...
We study the computational complexity of some central analysis problems for One-Counter Markov Decision Processes (OC-MDPs), a class of finitely-presented, countable-state MDPs. O...
Tomas Brazdil, Vaclav Brozek, Kousha Etessami, Ant...
We study and provide efficient algorithms for multi-objective model checking problems for Markov Decision Processes (MDPs). Given an MDP, M, and given multiple linear-time (ω-regu...
Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Va...