Sciweavers

584 search results - page 26 / 117
» Reinforcement Learning Task Clustering
Sort
View
130
Voted
ICML
2001
IEEE
16 years 3 months ago
Continuous-Time Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (RL) is a general framework which studies how to exploit the structure of actions and tasks to accelerate policy learning in large domains. Pri...
Mohammad Ghavamzadeh, Sridhar Mahadevan
126
Voted
CCGRID
2008
IEEE
15 years 9 months ago
Grid Differentiated Services: A Reinforcement Learning Approach
—Large scale production grids are a major case for autonomic computing. Following the classical definition of Kephart, an autonomic computing system should optimize its own beha...
Julien Perez, Cécile Germain-Renaud, Bal&aa...
134
Voted
CAMP
2005
IEEE
15 years 8 months ago
Reinforcement Learning for P2P Searching
— For a peer-to-peer (P2P) system holding massive amount of data, an efficient and scalable search for resource sharing is a key determinant to its practical usage. Unstructured...
Luca Gatani, Giuseppe Lo Re, Alfonso Urso, Salvato...

Publication
233views
14 years 1 months ago
Sparse reward processes
We introduce a class of learning problems where the agent is presented with a series of tasks. Intuitively, if there is relation among those tasks, then the information gained duri...
Christos Dimitrakakis
TSMC
2008
229views more  TSMC 2008»
15 years 2 months ago
A Comprehensive Survey of Multiagent Reinforcement Learning
Multiagent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, and economics. The complexity of many task...
Lucian Busoniu, Robert Babuska, Bart De Schutter