The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). ...
A. E. Eiben, Mark Horvath, Wojtek Kowalczyk, Marti...
In reinforcement learning, an agent interacting with its environment strives to learn a policy that specifies, for each state it may encounter, what action to take. Evolutionary c...
Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of ...
—The purpose of this paper is to present a comparison between two methods of building adaptive controllers for robots. In spite of the wide range of techniques which are used for...
Sergiu Goschin, Eduard Franti, Monica Dascalu, San...
XCS is a learning classifier system that combines a reinforcement learning scheme with evolutionary algorithms to evolve rule sets on-line by means of the interaction with an envi...
Sergio Morales-Ortigosa, Albert Orriols-Puig, Este...