In this paper we describe the first stage of a new learning system for object detection and recognition. For our system we propose Boosting [5] as the underlying learning technique...
Andreas Opelt, Michael Fussenegger, Axel Pinz, Pet...
Abstract. We introduce an extended computational framework for studying biological systems. Our approach combines formalization of existing qualitative models that are in wide but ...
Irit Gat-Viks, Amos Tanay, Daniela Raijman, Ron Sh...
We consider the problem of selecting a subset of m most informative features where m is the number of required features. This feature selection problem is essentially a combinator...
Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, ...
We use unsupervised probabilistic machine learning ideas to try to explain the kinds of learning observed in real neurons, the goal being to connect abstract principles of self-or...
In supervised learning, a training set consisting of labeled instances is used by a learning algorithm for generating a model (classifier) that is subsequently employed for decidi...