This site uses cookies to deliver our services and to ensure you get the best experience. By continuing to use this site, you consent to our use of cookies and acknowledge that you have read and understand our Privacy Policy, Cookie Policy, and Terms
In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volu...
Georg Langs, Rene Donner, Philipp Peloschek, Horst...
Recognizing 3D objects from arbitrary view points is one of the most fundamental problems in computer vision. A major challenge lies in the transition between the 3D geometry of o...
This paper presents an algorithm for learning the time-varying shape of a non-rigid 3D object from uncalibrated 2D tracking data. We model shape motion as a rigid component (rotat...
Lorenzo Torresani, Aaron Hertzmann, Christoph Breg...
We propose a person-dependent, manifold-based approach for modeling and tracking rigid and nonrigid 3D facial deformations from a monocular video sequence. The rigid and nonrigid ...
In this work, we present an approach to jointly segment a rigid object in a 2D image and estimate its 3D pose, using the knowledge of a 3D model. We naturally couple the two proces...
Samuel Dambreville, Romeil Sandhu, Anthony J. Yezz...