Sciweavers

112 search results - page 1 / 23
» Semi-supervised learning using label mean
Sort
View
NAACL
2007
14 years 18 days ago
Data-Driven Graph Construction for Semi-Supervised Graph-Based Learning in NLP
Graph-based semi-supervised learning has recently emerged as a promising approach to data-sparse learning problems in natural language processing. All graph-based algorithms rely ...
Andrei Alexandrescu, Katrin Kirchhoff
ICML
2003
IEEE
14 years 12 months ago
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, wit...
Xiaojin Zhu, Zoubin Ghahramani, John D. Lafferty
ICML
2009
IEEE
14 years 12 months ago
Semi-supervised learning using label mean
Semi-Supervised Support Vector Machines (S3VMs) typically directly estimate the label assignments for the unlabeled instances. This is often inefficient even with recent advances ...
Yu-Feng Li, James T. Kwok, Zhi-Hua Zhou
ASUNAM
2010
IEEE
14 years 21 days ago
Semi-Supervised Classification of Network Data Using Very Few Labels
The goal of semi-supervised learning (SSL) methods is to reduce the amount of labeled training data required by learning from both labeled and unlabeled instances. Macskassy and Pr...
Frank Lin, William W. Cohen
ACL
2006
14 years 17 days ago
Relation Extraction Using Label Propagation Based Semi-Supervised Learning
Shortage of manually labeled data is an obstacle to supervised relation extraction methods. In this paper we investigate a graph based semi-supervised learning algorithm, a label ...
Jinxiu Chen, Dong-Hong Ji, Chew Lim Tan, Zheng-Yu ...