The problem of learning tree-structured Gaussian graphical models from independent and identically distributed (i.i.d.) samples is considered. The influence of the tree structure a...
Vincent Y. F. Tan, Animashree Anandkumar, Alan S. ...
We consider Gaussian multiresolution (MR) models in which coarser, hidden variables serve to capture statistical dependencies among the finest scale variables. Tree-structured MR ...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...
Graphical models provide a powerful formalism for statistical signal processing. Due to their sophisticated modeling capabilities, they have found applications in a variety of fie...
V. Chandrasekaran, Jason K. Johnson, Alan S. Wills...
Gaussian graphical models are of great interest in statistical learning. Because the conditional independencies between different nodes correspond to zero entries in the inverse c...
In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by...