In this paper, we examine the application of manifold learning to the clustering problem. The method used is Locality Preserving Projections (LPP), which is chosen because of its ...
Hassan A. Kingravi, M. Emre Celebi, Pragya P. Raja...
We introduce a boosting framework to solve a classification problem with added manifold and ambient regularization costs. It allows for a natural extension of boosting into both s...
Nicolas Loeff, David A. Forsyth, Deepak Ramachandr...
Abstract. An abstract recurrent neural network trained by an unsupervised method is applied to the kinematic control of a robot arm. The network is a novel extension of the Neural ...
In this paper, we develop a geometric framework for linear or nonlinear discriminant subspace learning and classification. In our framework, the structures of classes are conceptu...
High dimensional data that lies on or near a low dimensional manifold can be described by a collection of local linear models. Such a description, however, does not provide a glob...
Sam T. Roweis, Lawrence K. Saul, Geoffrey E. Hinto...