In this paper, we consider a smoothing kernelbased classification rule and propose an algorithm for optimizing the performance of the rule by learning the bandwidth of the smoothi...
Bharath K. Sriperumbudur, Omer A. Lang, Gert R. G....
In multiple instance learning (MIL), how the instances determine the bag-labels is an essential issue, both algorithmically and intrinsically. In this paper, we show that the mech...
We propose Laplace max-margin Markov networks (LapM3 N), and a general class of Bayesian M3 N (BM3 N) of which the LapM3 N is a special case with sparse structural bias, for robus...
We consider the problem of learning to follow a desired trajectory when given a small number of demonstrations from a sub-optimal expert. We present an algorithm that (i) extracts...
The hierarchical Dirichlet process hidden Markov model (HDP-HMM) is a flexible, nonparametric model which allows state spaces of unknown size to be learned from data. We demonstra...
Emily B. Fox, Erik B. Sudderth, Michael I. Jordan,...