We present an approximation method that solves a class of Decentralized hybrid Markov Decision Processes (DEC-HMDPs). These DEC-HMDPs have both discrete and continuous state variab...
We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamica...
Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, R...
We propose a new model for the probabilistic estimation of continuous state variables from a sequence of observations, such as tracking the position of an object in video. This ma...