Although kernel measures of independence have been widely applied in machine learning (notably in kernel ICA), there is as yet no method to determine whether they have detected st...
Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le ...
We propose a novel, supervised feature extraction procedure, based on an unbiased estimator of the Hilbert-Schmidt independence criterion (HSIC). The proposed procedure can be dire...
We introduce a framework for filtering features that employs the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of dependence between the features and the labels. The ...
Le Song, Alex J. Smola, Arthur Gretton, Karsten M....
We propose a family of clustering algorithms based on the maximization of dependence between the input variables and their cluster labels, as expressed by the Hilbert-Schmidt Inde...
Le Song, Alexander J. Smola, Arthur Gretton, Karst...