Sciweavers

ICML
2007
IEEE
15 years 1 months ago
Support cluster machine
For large-scale classification problems, the training samples can be clustered beforehand as a downsampling pre-process, and then only the obtained clusters are used for training....
Bin Li, Mingmin Chi, Jianping Fan, Xiangyang Xue
ICML
2007
IEEE
15 years 1 months ago
Large-scale RLSC learning without agony
The advances in kernel-based learning necessitate the study on solving a large-scale non-sparse positive definite linear system. To provide a deterministic approach, recent resear...
Wenye Li, Kin-Hong Lee, Kwong-Sak Leung
ICML
2007
IEEE
15 years 1 months ago
Multi-task learning for sequential data via iHMMs and the nested Dirichlet process
A new hierarchical nonparametric Bayesian model is proposed for the problem of multitask learning (MTL) with sequential data. Sequential data are typically modeled with a hidden M...
Kai Ni, Lawrence Carin, David B. Dunson
ICML
2007
IEEE
15 years 1 months ago
Multiple instance learning for sparse positive bags
We present a new approach to multiple instance learning (MIL) that is particularly effective when the positive bags are sparse (i.e. contain few positive instances). Unlike other ...
Razvan C. Bunescu, Raymond J. Mooney
ICML
2007
IEEE
15 years 1 months ago
Incremental Bayesian networks for structure prediction
We propose a class of graphical models appropriate for structure prediction problems where the model structure is a function of the output structure. Incremental Sigmoid Belief Ne...
Ivan Titov, James Henderson
ICML
2007
IEEE
15 years 1 months ago
Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian Eigenmaps
Non-linear dimensionality reduction of noisy data is a challenging problem encountered in a variety of data analysis applications. Recent results in the literature show that spect...
Samuel Gerber, Tolga Tasdizen, Ross T. Whitaker
ICML
2007
IEEE
15 years 1 months ago
Exponentiated gradient algorithms for log-linear structured prediction
Conditional log-linear models are a commonly used method for structured prediction. Efficient learning of parameters in these models is therefore an important problem. This paper ...
Amir Globerson, Terry Koo, Xavier Carreras, Michae...
ICML
2007
IEEE
15 years 1 months ago
Comparisons of sequence labeling algorithms and extensions
In this paper, we survey the current state-ofart models for structured learning problems, including Hidden Markov Model (HMM), Conditional Random Fields (CRF), Averaged Perceptron...
Nam Nguyen, Yunsong Guo
ICML
2007
IEEE
15 years 1 months ago
Quantum clustering algorithms
By the term "quantization", we refer to the process of using quantum mechanics in order to improve a classical algorithm, usually by making it go faster. In this paper, ...
Esma Aïmeur, Gilles Brassard, Sébastie...
ICML
2007
IEEE
15 years 1 months ago
Minimum reference set based feature selection for small sample classifications
We address feature selection problems for classification of small samples and high dimensionality. A practical example is microarray-based cancer classification problems, where sa...
Xue-wen Chen, Jong Cheol Jeong