This site uses cookies to deliver our services and to ensure you get the best experience. By continuing to use this site, you consent to our use of cookies and acknowledge that you have read and understand our Privacy Policy, Cookie Policy, and Terms
Traditional clustering focuses on finding a single best clustering solution from data. However, given a single data set, one could interpret it in different ways. This is particul...
-- Combination of multiple clusterings is an important task in the area of unsupervised learning. Inspired by the success of supervised bagging algorithms, we propose a resampling ...
Behrouz Minaei-Bidgoli, Alexander P. Topchy, Willi...
A data set can be clustered in many ways depending on the clustering algorithm employed, parameter settings used and other factors. Can multiple clusterings be combined so that th...
Alexander P. Topchy, Anil K. Jain, William F. Punc...
Combining multiple clusterings arises in various important data mining scenarios. However, finding a consensus clustering from multiple clusterings is a challenging task because ...