Sciweavers

COMBINATORICS
2006
116views more  COMBINATORICS 2006»
13 years 11 months ago
The Circular Chromatic Index of Flower Snarks
We determine the circular chromatic index of flower snarks, by showing that c(F3) = 7/2, c(F5) = 17/5 and c(Fk) = 10/3 for every odd integer k 7, where Fk denotes the flower snar...
Mohammad Ghebleh, Daniel Král, Serguei Nori...
ARSCOM
2007
82views more  ARSCOM 2007»
13 years 11 months ago
Extremal properties of (1, f)-odd factors in graphs
Let G be a simple graph and f : V (G) → {1, 3, 5, ...} an odd integer valued function defined on V (G). A spanning subgraph F of G is called a (1, f)odd factor if dF (v) ∈ {1...
Qinglin Roger Yu, Zhao Zhang