Alternating Gibbs sampling is the most common scheme used for sampling from Restricted Boltzmann Machines (RBM), a crucial component in deep architectures such as Deep Belief Netw...
Guillaume Desjardins, Aaron C. Courville, Yoshua B...
Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn...
Arthur Asuncion, Qiang Liu, Alexander T. Ihler, Pa...
A new algorithm for training Restricted Boltzmann Machines is introduced. The algorithm, named Persistent Contrastive Divergence, is different from the standard Contrastive Diverg...