This site uses cookies to deliver our services and to ensure you get the best experience. By continuing to use this site, you consent to our use of cookies and acknowledge that you have read and understand our Privacy Policy, Cookie Policy, and Terms
Many vision problems can be cast as optimizing the conditional probability density function p(C|I) where I is an image and C is a vector of model parameters describing the image. ...
Jingdan Zhang, Shaohua Kevin Zhou, Dorin Comaniciu...
We present Propagation Networks (P-Nets), a novel approach for representing and recognizing sequential activities that include parallel streams of action. We represent each activi...
Yifan Shi, Yan Huang, David Minnen, Aaron F. Bobic...
We propose a method to learn heterogeneous models of object classes for visual recognition. The training images contain a preponderance of clutter and learning is unsupervised. Ou...