Sciweavers

EMNLP
2008
14 years 13 days ago
An Analysis of Active Learning Strategies for Sequence Labeling Tasks
Active learning is well-suited to many problems in natural language processing, where unlabeled data may be abundant but annotation is slow and expensive. This paper aims to shed ...
Burr Settles, Mark Craven
AAAI
2008
14 years 1 months ago
Hidden Dynamic Probabilistic Models for Labeling Sequence Data
We propose a new discriminative framework, namely Hidden Dynamic Conditional Random Fields (HDCRFs), for building probabilistic models which can capture both internal and external...
Xiaofeng Yu, Wai Lam
ICML
2009
IEEE
14 years 5 months ago
Sparse higher order conditional random fields for improved sequence labeling
In real sequence labeling tasks, statistics of many higher order features are not sufficient due to the training data sparseness, very few of them are useful. We describe Sparse H...
Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huan...