This site uses cookies to deliver our services and to ensure you get the best experience. By continuing to use this site, you consent to our use of cookies and acknowledge that you have read and understand our Privacy Policy, Cookie Policy, and Terms
This paper is based on a new way for determining the regularization trade-off in least squares support vector machines (LS-SVMs) via a mechanism of additive regularization which ha...
Kristiaan Pelckmans, Johan A. K. Suykens, Bart De ...
In this work, we developed classifiers to distinguish between four ovarian tumor types using Bayesian least squares support vector machines (LS-SVMs) and kernel logistic regression...
Ben Van Calster, Dirk Timmerman, Antonia C. Testa,...
—In kernel based regression techniques (such as Support Vector Machines or Least Squares Support Vector Machines) it is hard to analyze the influence of perturbed inputs on the ...