Sciweavers

UAI
2003
14 years 15 days ago
Learning Continuous Time Bayesian Networks
Continuous time Bayesian networks (CTBN) describe structured stochastic processes with finitely many states that evolve over continuous time. A CTBN is a directed (possibly cycli...
Uri Nodelman, Christian R. Shelton, Daphne Koller
BIBE
2008
IEEE
111views Bioinformatics» more  BIBE 2008»
14 years 1 months ago
Structure learning for biomolecular pathways containing cycles
Bayesian network structure learning is a useful tool for elucidation of regulatory structures of biomolecular pathways. The approach however is limited by its acyclicity constraint...
S. Itani, Karen Sachs, Garry P. Nolan, M. A. Dahle...
KDD
2010
ACM
274views Data Mining» more  KDD 2010»
14 years 3 months ago
Grafting-light: fast, incremental feature selection and structure learning of Markov random fields
Feature selection is an important task in order to achieve better generalizability in high dimensional learning, and structure learning of Markov random fields (MRFs) can automat...
Jun Zhu, Ni Lao, Eric P. Xing
ICMCS
2008
IEEE
207views Multimedia» more  ICMCS 2008»
14 years 5 months ago
Structure learning in a Bayesian network-based video indexing framework
Several stochastic models provide an effective framework to identify the temporal structure of audiovisual data. Most of them need as input a first video structure, i.e. connecti...
Siwar Baghdadi, Guillaume Gravier, Claire-Hé...
CEC
2009
IEEE
14 years 6 months ago
Structure learning and optimisation in a Markov-network based estimation of distribution algorithm
—Structure learning is a crucial component of a multivariate Estimation of Distribution algorithm. It is the part which determines the interactions between variables in the proba...
Alexander E. I. Brownlee, John A. W. McCall, Siddh...