With the advances in medical imaging devices, large volumes of high-resolution 3D medical image data have been produced. These high-resolution 3D data are very large in size, and severely stress storage systems and networks. Most existing Web-based 3D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3D highresolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very huge, and many users concurrently access the server. In this paper, we propose a novel framework for Web-based interactive applications of high-resolution 3D medical image data. Specifically, we first partition the whole 3D data into buckets, and then compress each bucket separately. We also propose an indexing structure for these buckets to efficiently support typical queries such as 3D slicer and region of int...
Danzhou Liu, Kien A. Hua, Kiminobu Sugaya