During recent years there has been an explosive growth of biological data coming from genome projects, proteomics, protein structure determination, and the rapid expansion in digitization of patient biological data. Powerful computational techniques are required to understand and analyze biological information encoded by DNA sequences, which are frequently compared and searched for matching or near-matching patterns. Comparison of DNA sequences and genes can be useful to investigate the common functionalities of the corresponding organisms and to get a better understanding of how specific genes or groups of genes are organized. This kind of similarity calculation is known as sequence alignment and its objective is to identify similarities between subsequences of strings. Gene sequence alignment is one such problem that serves as an initial step in many of the problems in bioinformatics. Solving computational biology problems can be accelerated by algorithmic improvements or with the h...
Nasreddine Hireche, J. M. Pierre Langlois, Gabriel