Abstract. We present an approach for robust shape retrieval from databases containing articulated 3D shapes. We represent each shape by the eigenvectors of an appropriately defined affinity matrix, obtaining a spectral embedding. Retrieval is then performed on these embeddings using global shape descriptors. Transformation into the spectral domain normalizes the shapes against articulation (bending), rigid-body transformations, and uniform scaling. Experimentally, we show absolute improvement in retrieval performance when conventional shape descriptors are used in the spectral domain on the McGill database of articulated 3D shapes. We also propose a simple eigenvalue-based descriptor, which is easily computed and performs comparably against the best known shape descriptors applied to the original shapes.