By violating MAC-layer protocols, the jamming attack aims at blocking successful communication among wireless nodes. Wireless sensor networks (WSNs) are highly vulnerable to jamming because of reliance on shared wireless medium, constrained per-sensor resources, and high risk of sensor compromise. Moreover, base stations of WSNs are single points of failure and, thus, attractive jamming targets. To tackle base-station jamming, replication of base stations as well as jamming evasion, by relocation to unjammed locations, have been proposed. In this paper, we propose Honeybees, an energy-aware defense framework against base-station jamming attack in WSNs. Honeybees efficiently combines replication and evasion to allow WSNs to continue delivering data for a long time during a jamming attack. We present three defense strategies: reactive, proactive, and hybrid, in the context of multi-hop WSN deployment. Through simulation, we show the interaction of these strategies with different attack...
Sherif M. Khattab, Daniel Mossé, Rami G. Me