Sciweavers

ICIP
2007
IEEE

Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space

15 years 2 months ago
Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space
We propose an effective color image denoising method that exploits ltering in highly sparse local 3D transform domain in each channel of a luminance-chrominance color space. For each image block in each channel, a 3D array is formed by stacking together blocks similar to it, a process that we call "grouping". The high similarity between grouped blocks in each 3D array enables a highly sparse representation of the true signal in a 3D transform domain and thus a subsequent shrinkage of the transform spectra results in effective noise attenuation. The peculiarity of the proposed method is the application of a "grouping constraint" on the chrominances by reusing exactly the same grouping as for the luminance. The results demonstrate the effectiveness of the proposed grouping constraint and show that the developed denoising algorithm achieves state-of-the-art performance in terms of both peak signal-to-noise ratio and visual quality.
Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik
Added 21 Oct 2009
Updated 27 Oct 2009
Type Conference
Year 2007
Where ICIP
Authors Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, Karen O. Egiazarian
Comments (0)