- In this paper, we seek to understand how leg muscles and tendons work mechanically during walking in order to motivate the design of efficient robotic legs. We hypothesize that a robotic leg comprising only knee and ankle passive and quasi-passive elements, including springs, clutches and variable-damping components, can capture the dominant mechanical behavior of the human knee and ankle during level-ground walking at self-selected speeds. As a preliminary evaluation of this hypothesis, we put forth a simple leg model that captures the gross features of the human leg musculoskeletal architecture. We vary model parameters, or spring constants, damping levels and times when clutches are engaged, using an optimization scheme where errors between model joint behaviours and biological joint mechanics are minimized. For model evaluation, kinetic and kinematic gait data are employed from a single participant walking across a level-ground surface at a self-selected gait
Ken Endo, Daniel Paluska, Hugh M. Herr