Sciweavers

IROS
2006
IEEE

Policy Gradient Methods for Robotics

14 years 5 months ago
Policy Gradient Methods for Robotics
— The aquisition and improvement of motor skills and control policies for robotics from trial and error is of essential importance if robots should ever leave precisely pre-structured environments. However, to date only few existing reinforcement learning methods have been scaled into the domains of highdimensional robots such as manipulator, legged or humanoid robots. Policy gradient methods remain one of the few exceptions and have found a variety of applications. Nevertheless, the application of such methods is not without peril if done in an uninformed manner. In this paper, we give an overview on learning with policy gradient methods for robotics with a strong focus on recent advances in the field. We outline previous applications to robotics and show how the most recently developed methods can significantly improve learning performance. Finally, we evaluate our most promising algorithm in the application of hitting a baseball with an anthropomorphic arm.
Jan Peters, Stefan Schaal
Added 12 Jun 2010
Updated 12 Jun 2010
Type Conference
Year 2006
Where IROS
Authors Jan Peters, Stefan Schaal
Comments (0)