— This paper discusses the first implementation of a dynamically stable bounding gait on a hybrid wheeled-leg robot. Design of the robot is reviewed and the controllers which allow this mode of mobility to occur are discussed. Experimental results demonstrating the key dynamic characteristics of the gait, including footfall patterns, are given. The hypothesis that varying leg takeoff angles can lead to regulation of forward speed of the bounding gait is presented and verified. In addition, comparisons are made between the bounding gait which uses active wheel control and bounding which uses passive mechanical blocking of the wheels.