Abstract – Multiple-Input-Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems have recently attracted substantial research interest. However, compared to Single-Input-Single-Output (SISO) systems, channel estimation in the MIMO scenario becomes more challenging, owing to the increased number of independent transmitter-receiver links to be estimated. In the context of the Bell LAyered Space-Time architecture (BLAST) or Space Division Multiple Access (SDMA) multi-user MIMO OFDM literature, no channel estimation technique allows the number of users to be higher than the number of receiver antennas, which is often referred to as an “overloaded” scenario. In this contribution we propose a new Genetic Algorithm (GA) assisted iterative joint channel estimation and multiuser detection approach for MIMO SDMA-OFDM systems, which exhibits a robust performance in the above-mentioned overloaded scenario. Furthermore, GA-aided Multi-User Detection (MUD) techniques ...