We present a cellular-automaton model of a reaction-diffusion excitable system with concentration dependent inhibition of the activator, and study the dynamics of mobile localizations (gliders) and their generators. We analyze a three-state totalistic cellular automaton on a twodimensional lattice with hexagonal tiling, where each cell connects with 6 others. We show that a set of specific rules support spiral glider-guns (rotating activator-inhibitor spirals emitting mobile localizations) and stationary localizations which destroy or modify gliders, along with a rich diversity of emergent structures with computational properties. We describe how structures are created and annihilated by glider collisions, and begin to explore the necessary processes that generate this kind of complex dynamics.