Sciweavers

ADMA
2006
Springer

Distance Guided Classification with Gene Expression Programming

14 years 5 months ago
Distance Guided Classification with Gene Expression Programming
Gene Expression Programming (GEP) aims at discovering essential rules hidden in observed data and expressing them mathematically. GEP has been proved to be a powerful tool for constructing efficient classifiers. Traditional GEP-classifiers ignore the distribution of samples, and hence decrease the efficiency and accuracy. The contributions of this paper include: (1) proposing two strategies of generating classification threshold dynamically, (2) designing a new approach called Distance Guided Evolution Algorithm (DGEA) to improve the efficiency of GEP, and (3) demonstrating the effectiveness of generating classification threshold dynamically and DGEA by extensive experiments. The results show that the new methods decrease the number of evolutional generations by 83% to 90%, and increase the accuracy by 20% compared with the traditional approach.
Lei Duan, Changjie Tang, Tianqing Zhang, Dagang We
Added 13 Jun 2010
Updated 13 Jun 2010
Type Conference
Year 2006
Where ADMA
Authors Lei Duan, Changjie Tang, Tianqing Zhang, Dagang Wei, Huan Zhang
Comments (0)