Wireless mesh networks (WMNs) have been proposed as a solution for ubiquitous last-mile broadband access. A critical limiting factor for many WMN protocols in realizing their throughput potential is the interference between nodes in the WMN. Understanding and characterizing such interference is important for a variety of purposes such as channel assignment, route selection, and fair scheduling. Instead of using ad hoc heuristics, a recent study proposed characterizing interference in a WMN by measuring two-way interference, i.e., interference between each pair of communicating links. In this paper, we study the extent of multi-way interference, i.e., the interference caused by multiple transmitters to a communicating link. We find through simulations and through measurements of a 32-node wireless testbed that even if these transmitters individually do not interfere significantly with a given communicating link, simultaneous transmissions of them have the potential to significantly ...
Saumitra M. Das, Dimitrios Koutsonikolas, Y. Charl