We consider the problem of name-independent routing in doubling metrics. A doubling metric is a metric space whose doubling dimension is a constant, where the doubling dimension of a metric space is the least value α such that any ball of radius r can be covered by at most 2α balls of radius r/2. Given any δ > 0 and a weighted undirected network G whose shortest path metric d is a doubling metric with doubling dimension α, we present a name-independent routing scheme for G with (9+δ)-stretch, (2+ 1 δ )O(α) (log ∆)2 (log n)bit routing information at each node, and packet headers of size O(log n), where ∆ is the ratio of the largest to the smallest shortest path distance in G. In addition, we prove that for any ǫ ∈ (0, 8), there is a doubling metric network G with n nodes, doubling dimension α ≤ 6 − log ǫ, and ∆ = O(21/ǫ n) such that any name-independent routing scheme on G with routing information at each node of size o(n(ǫ/60)2 )-bits has stretch larger than...
Goran Konjevod, Andréa W. Richa, Donglin Xi