The typical means by which an attacker breaks into a network is through a chain of exploits, where each exploit in the chain lays the groundwork for subsequent exploits. Such a chain is called an attack path, and the set of all possible attack paths form an attack graph. Researchers have proposed a variety of methods to generate attack graphs. In this paper, we provide a novel alternative approach to network vulnerability analysis by utilizing a penetration tester’s perspective of maximal level of penetration possible on a host. Our approach has the following benefits: it provides a more intuitive model in which an analyst can work, and its algorithmic complexity is polynomial in the size of the network, and so has the potential of scaling well to practical networks. The drawback is that we track only “good” attack paths, as opposed to all possible attack paths. Hence, an analyst may make suboptimal choices when repairing the network. Since attack graphs grow exponentially with...
Paul Ammann, Joseph Pamula, Julie A. Street, Ronal