Modern embedded microprocessors use low power on-chip memories called scratch-pad memories to store frequently executed instructions and data. Unlike traditional caches, scratch-pad memories lack the complex tag checking and comparison logic, thereby proving to be efficient in area and power. In this work, we focus on exploiting scratch-pad memories for storing hot code segments within an application. Static placement techniques focus on placing the most frequently executed portions of programs into the scratch-pad. However, static schemes are inherently limited by not allowing the contents of the scratch-pad memory to change at run time. In a large fraction of applications, the instruction memory footprints exceed the scratch-pad memory size, thereby limiting the usefulness of the scratch-pad. We propose a compiler managed dynamic placement algorithm, wherein multiple hot code sequences, or traces, are overlapped with each other in the scratch-pad memory at different points in time ...
Rajiv A. Ravindran, Pracheeti D. Nagarkar, Ganesh