- We present an architecture for data streams based on structures typically found in web cache hierarchies. The main idea is to build a meta level analyser from a number of levels constructed over time from a data stream. We present the general architecture for such a system and an application to classification. This architecture is an instance of the general wrapper idea allowing us to reuse standard batch learning algorithms in an inherently incremental learning environment. By artificially generating data sources we demonstrate that a hierarchy containing a mixture of models is able to adapt over time to the source of the data. In these experiments the hierarchies use an elementary performance based replacement policy and unweighted voting for making classification decisions.