Data intensive applications on clusters often require requests quickly be sent to the node managing the desired data. In many applications, one must look through a sorted tree structure to determine the responsible node for accessing or storing the data. Examples include object tracking in sensor networks, packet routing over the internet, request processing in publish-subscribe middleware, and query processing in database systems. When the tree structure is larger than the CPU cache, the standard implementation potentially incurs many cache misses for each lookup; one cache miss at each successive level of the tree. As the CPURAM gap grows, this performance degradation will only become worse in the future. We propose a solution that takes advantage of the growing speed of local area networks for clusters. We split the sorted tree structure among the nodes of the cluster. We assume that the structure will fit inside the aggregation of the CPU caches of the entire cluster. We then sen...