We propose a general method that parameterizes general surfaces with complex (possible branching) topology using Riemann surface structure. Rather than evolve the surface geometry to a plane or sphere, we instead use the fact that all orientable surfaces are Riemann surfaces and admit conformal structures, which induce special curvilinear coordinate systems on the surfaces. We can then automatically partition the surface using a critical graph that connects zero points in the global conformal structure on the surface. The trajectories of iso-parametric curves canonically partition a surface into patches. Each of these patches is either a topological disk or a cylinder and can be conformally mapped to a parallelogram by integrating a holomorphic 1-form defined on the surface. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable. For surfaces with similar topology and geometry, we show that the parameterization results are consistent an...
Yalin Wang, Xianfeng Gu, Kiralee M. Hayashi, Tony