Many real-time systems must control their CPU utilizations in order to meet end-to-end deadlines and prevent overload. Utilization control is particularly challenging in distributed real-time systems with highly unpredictable workloads and a large number of end-to-end tasks and processors. This paper presents the Decentralized End-to-end Utilization CONtrol (DEUCON) algorithm that can dynamically enforce desired utilizations on multiple processors in such systems. In contrast to centralized control schemes adopted in earlier work, DEUCON features a novel decentralized control structure that only requires localized coordination among neighbor processors. DEUCON is systematically designed based on recent advances in distributed model predictive control theory. Both control-theoretic analysis and simulations show that DEUCON can provide robust utilization guarantees and maintain global system stability despite severe variations in task execution times. Furthermore, DEUCON can effectively...
Xiaorui Wang, Dong Jia, Chenyang Lu, Xenofon D. Ko