Disk subsystem is known to be a major contributor to overall power consumption of high-end parallel systems. Past research proposed several architectural level techniques to reduce disk power by taking advantage of idle periods experienced by disks. While such techniques have been known to be effective in certain cases, they share a common drawback: they operate in a reactive manner; i.e., they control disk power by observing past disk activity (e.g., idle and active periods) and estimating future ones. Consequently, they can miss opportunities for saving power and incur significant performance penalties, due to inaccuracies in predicting idle and active times. Motivated by this observation, this paper proposes and evaluates a compiler-driven approach to reducing disk power consumption of array-based scientific applications executing on parallel architectures. The proposed approach exposes disk layout information to the compiler, allowing it to derive disk access pattern, i.e., the ...
Seung Woo Son, Guangyu Chen, Mahmut T. Kandemir, A