Sciweavers

ATAL
2005
Springer

Tunably decentralized algorithms for cooperative target observation

14 years 5 months ago
Tunably decentralized algorithms for cooperative target observation
Multi-agent problem domains may require distributed algorithms for a variety of reasons: local sensors, limitations of communication, and availability of distributed computational resources. In the absence of these constraints, centralized algorithms are often more efficient, simply because they are able to take advantage of more information. We introduce a variant of the cooperative target observation domain which is free of such constraints. We propose two algorithms, inspired by K-means clustering and hill-climbing respectively, which are scalable in degree of decentralization. Neither algorithm consistently outperforms the other across over all problem domain settings. Surprisingly, we find that hill-climbing is sensitive to degree of decentralization, while K-means is not. We also experiment with a combination of the two algorithms which draws strength from each. Categories and Subject Descriptors I.6 [Simulation and Modeling]: Model Development; G.3 [Probability and Statistics...
Sean Luke, Keith Sullivan, Liviu Panait, Gabriel C
Added 26 Jun 2010
Updated 26 Jun 2010
Type Conference
Year 2005
Where ATAL
Authors Sean Luke, Keith Sullivan, Liviu Panait, Gabriel Catalin Balan
Comments (0)