Abstract. We address the issue of efficiently automating assume-guarantee reasoning for simulation conformance between finite state systems and specifications. We focus on a non-circular assume-guarantee proof rule, and show that there is a weakest assumption that can be represented canonically by a deterministic tree automata (DTA). We then present an algorithm LT that learns this DTA automatically in an incremental fashion, in time that is polynomial in the number of states in the equivalent minimal DTA. The algorithm assumes a teacher that can answer membership and candidate queries pertaining to the language of the unknown DTA. We show how the teacher can be implemented using a model checker. We have implemented this framework in the COMFORT toolkit and we report encouraging results (over an order of magnitude improvement in memory consumption) on non-trivial benchmarks.
Sagar Chaki, Edmund M. Clarke, Nishant Sinha, Pras