The Full-Domain Hash (FDH) signature scheme [3] forms one the most basic usages of random oracles. It works with a family F of trapdoor permutations (TDP), where the signature of m is computed as f−1 (h(m)) (here f ∈R F and h is modelled as a random oracle). It is known to be existentially unforgeable for any TDP family F [3], although a much tighter security reduction is known for a restrictive class of TDP’s [10, 14] — namely, those induced by a family of claw-free permutations (CFP) pairs. The latter result was shown [11] to match the best possible “black-box” security reduction in the random oracle model, irrespective of the TDP family F (e.g., RSA) one might use. In this work we investigate the question if it is possible to instantiate the random oracle h with a “real” family of hash functions H such that the corresponding schemes can be proven secure in the standard model, under some natural assumption on the family F. Our main result rules out the existence of su...